Перевод: со всех языков на английский

с английского на все языки

History of Colour Photography

  • 1 Ducos du Hauron, Arthur-Louis

    [br]
    b. 1837 Langon, Bordeaux, France
    d. 19 August 1920 Agen, France
    [br]
    French scientist and pioneer of colour photography.
    [br]
    The son of a tax collector, Ducos du Hauron began researches into colour photography soon after the publication of Clerk Maxwell's experiment in 1861. In a communication sent in 1862 for presentation at the Académie des Sciences, but which was never read, he outlined a number of methods for photography of colours. Subsequently, in his book Les Couleurs en photographie, published in 1869, he outlined most of the principles of additive and subtractive colour photography that were later actually used. He covered additive processes, developed from Clerk Maxwell's demonstrations, and subtractive processes which could yield prints. At the time, the photographic materials available prevented the processes from being employed effectively. The design of his Chromoscope, in which transparent reflectors could be used to superimpose three additive images, was sound, however, and formed the basis of a number of later devices. He also proposed an additive system based on the use of a screen of fine red, yellow and blue lines, through which the photograph was taken and viewed. The lines blended additively when seen from a certain distance. Many years later, in 1907, Ducos du Hauron was to use this principle in an early commercial screen-plate process, Omnicolore. With his brother Alcide, he published a further work in 1878, Photographie des Couleurs, which described some more-practical subtractive processes. A few prints made at this time still survive and they are remarkably good for the period. In a French patent of 1895 he described yet another method for colour photography. His "polyfolium chromodialytique" involved a multiple-layer package of separate red-, green-and blue-sensitive materials and filters, which with a single exposure would analyse the scene in terms of the three primary colours. The individual layers would be separated for subsequent processing and printing. In a refined form, this is the principle behind modern colour films. In 1891 he patented and demonstrated the anaglyph method of stereoscopy, using superimposed red and green left and right eye images viewed through green and red filters. Ducos du Hauron's remarkable achievement was to propose theories of virtually all the basic methods of colour photography at a time when photographic materials were not adequate for the purpose of proving them correct. For his work on colour photography he was awarded the Progress Medal of the Royal Photographic Society in 1900, but despite his major contributions to colour photography he remained in poverty for much of his later life.
    [br]
    Further Reading
    B.Coe, 1978, Colour Photography: The First Hundred Years, London. J.S.Friedman, 1944, History of Colour Photography, Boston. E.J.Wall, 1925, The History of Three-Colour Photography, Boston. See also Cros, Charles.
    BC

    Biographical history of technology > Ducos du Hauron, Arthur-Louis

  • 2 Ives, Frederic Eugene

    [br]
    b. 17 February 1856 Litchfield, Connecticut, USA
    d. 27 May 1937 Philadelphia, Pennsylvania, USA
    [br]
    American printer who pioneered the development of photomechanical and colour photographic processes.
    [br]
    Ives trained as a printer in Ithaca, New York, and became official photographer at Cornell University at the age of 18. His research into photomechanical processes led in 1886 to methods of making halftone reproduction of photographs using crossline screens. In 1881 he was the first to make a three-colour print from relief halftone blocks. He made significant contributions to the early development of colour photography, and from 1888 he published and marketed a number of systems for the production of additive colour photographs. He designed a beam-splitting camera in which a single lens exposed three negatives through red, green and blue filters. Black and white transparencies from these negatives were viewed in a device fitted with internal reflectors and filters, which combined the three colour separations into one full-colour image. This device was marketed in 1895 under the name Kromskop; sets of Kromograms were available commercially, and special cameras, or adaptors for conventional cameras, were available for photographers who wished to take their own colour pictures. A Lantern Kromskop was available for the projection of Kromskop pictures. Ives's system enjoyed a few years of commercial success before simpler methods of making colour photographs rendered it obsolete. Ives continued research into colour photography; his later achievements included the design, in 1915, of the Hicro process, in which a simple camera produced sets of separation negatives that could be printed as dyed transparencies in complementary colours and assembled in register on paper to produce colour prints. Later, in 1932, he introduced Polychrome, a simpler, two-colour process in which a bipack of two thin negative plates or films could be exposed in conventional cameras. Ives's interest extended into other fields, notably stereoscopy. He developed a successful parallax stereogram process in 1903, in which a three-dimensional image could be seen directly, without the use of viewing devices. In his lifetime he received many honours, and was a recipient of the Royal Photographic Society's Progress Medal in 1903 for his work in colour photography.
    [br]
    Further Reading
    B.Coe, 1978, Colour Photography: The First Hundred Years, London J.S.Friedman, 1944, History of Colour Photography, Boston. G.Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Ives, Frederic Eugene

  • 3 Cros, Charles

    [br]
    b. 1842 France
    d. 1888
    [br]
    French doctor, painter and man of letters who pioneered research into colour photography.
    [br]
    A man of considerable intellect, Cros occupied himself with studies of topics as diverse as Sanskrit and the synthesis of precious stones. He was in particular interested in the possibility of colour photography, and deposited an account of his theories in a sealed envelope with the Académie des Sciences on 2 December 1867, with instructions that it should be opened in 1876. Learning of a forthcoming presentation on colour photography by Ducos du Hauron at the Société Française de Photographie, he arranged for the contents of his communication to be published on 25 February 1869 in Les Mondes. At the Société's meeting on 7 May 1869, Cros's letter was read and samples of colour photography from Ducos du Hauron were shown. Both had arrived at similar conclusions: that colour photography was possible with the analysis of colours using negatives exposed through red, green and blue filters, as demonstrated by Clerk Maxwell in 1861. These records could be reproduced by combining positive images produced in blue-green, magenta and yellow pigments or dyes. Cros and Ducos du Hauron had discovered the principle of subtractive colour photography, which is used in the late twentieth century. In 1878 Cros designed the Chromometre, a device for measuring colours by mixing red, green and blue light, and described the device in a paper to the Société Française de Photographie on 10 January 1879. With suitable modification, the device could be used as a viewer for colour photographs, combining red, green and blue positives. In 1880 he patented the principle of imbibition printing, in which dye taken up by a gelatine relief image could be transferred to another support. This principle, which he called hydrotypie, readily made possible the production of three-colour subtractive photographic prints.
    [br]
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston. Gert Koshofer, 1981, Farbefotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Cros, Charles

  • 4 Lippman, Gabriel

    [br]
    b. 16 August 1845 Hallerick, Luxembourg
    d. 14 July 1921 at sea, in the North Atlantic
    [br]
    French physicist who developed interference colour photography.
    [br]
    Born of French parents, Lippman's work began with a distinguished career in classics, philosophy, mathematics and physics at the Ecole Normale in Luxembourg. After further studies in physics at Heidelberg University, he returned to France and the Sorbonne, where he was in 1886 appointed Director of Physics. He was a leading pioneer in France of research into electricity, optics, heat and other branches of physics.
    In 1886 he conceived the idea of recording the existence of standing waves in light when it is reflected back on itself, by photographing the colours so produced. This required the production of a photographic emulsion that was effectively grainless: the individual silver halide crystals had to be smaller than the shortest wavelength of light to be recorded. Lippman succeeded in this and in 1891 demonstrated his process. A glass plate was coated with a grainless emulsion and held in a special plate-holder, glass towards the lens. The back of the holder was filled with mercury, which provided a perfect reflector when in contact with the emulsion. The standing waves produced during the exposure formed laminae in the emulsion, with the number of laminae being determined by the wavelength of the incoming light at each point on the image. When the processed plate was viewed under the correct lighting conditions, a theoretically exact reproduction of the colours of the original subject could be seen. However, the Lippman process remained a beautiful scientific demonstration only, since the ultra-fine-grain emulsion was very slow, requiring exposure times of over 10,000 times that of conventional negative material. Any method of increasing the speed of the emulsion also increased the grain size and destroyed the conditions required for the process to work.
    [br]
    Principal Honours and Distinctions
    Royal Photographic Society Progress Medal 1897. Nobel Prize (for his work in interference colour photography) 1908.
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston.
    Brian Coe, 1978, Colour Photography: The First Hundred Years, London. Gert Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Lippman, Gabriel

  • 5 Joly, John

    [br]
    b. 1857 Holywood, King's County (now County Down, Northwern Ireland), Ireland
    d. 8 December 1933 Dublin, Eire
    [br]
    Irish pioneer of additive screen-plate colour photography.
    [br]
    Professor of Physics at Trinity College, Dublin, Joly developed a concept first suggested by Ducos du Hauron, creating in 1893 a process in which fine transparent red, green and blue lines, less than 0.1 mm wide, were ruled on a glass plate. The coloured inks were aniline dyes mixed with gum. This screen plate was held in close contact with a photographic negative plate which was exposed through the screen in a camera. The processed negative was printed onto a positive plate, and a viewing screen, similar to that used for taking, was bound up with it in careful register, to reproduce the original colours. The process was patented in 1894, and marketed in 1895. It was the first commercially successful additive screen-plate process to appear. While the results could be quite acceptable, the inadequate colour sensitivity of the negative plates then available limited the usefulness of this process. Professor Joly's other achievements included geological research and the treatment of cancer by radium.
    [br]
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston.
    B.Coe, 1978, Colour Photography: The First Hundred Years, London. G.Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Joly, John

  • 6 Lumière, Auguste

    [br]
    b. 19 October 1862 Besançon, France
    d. 10 April 1954 Lyon, France
    [br]
    French scientist and inventor.
    [br]
    Auguste and his brother Louis Lumière (b. 5 October 1864 Besançon, France; d. 6 June 1948 Bandol, France) developed the photographic plate-making business founded by their father, Charles Antoine Lumière, at Lyons, extending production to roll-film manufacture in 1887. In the summer of 1894 their father brought to the factory a piece of Edison kinetoscope film, and said that they should produce films for the French owners of the new moving-picture machine. To do this, of course, a camera was needed; Louis was chiefly responsible for the design, which used an intermittent claw for driving the film, inspired by a sewing-machine mechanism. The machine was patented on 13 February 1895, and it was shown on 22 March 1895 at the Société d'Encouragement pour l'In-dustrie Nationale in Paris, with a projected film showing workers leaving the Lyons factory. Further demonstrations followed at the Sorbonne, and in Lyons during the Congrès des Sociétés de Photographie in June 1895. The Lumières filmed the delegates returning from an excursion, and showed the film to the Congrès the next day. To bring the Cinématographe, as it was called, to the public, the basement of the Grand Café in the Boulevard des Capuchines in Paris was rented, and on Saturday 28 December 1895 the first regular presentations of projected pictures to a paying public took place. The half-hour shows were an immediate success, and in a few months Lumière Cinématographes were seen throughout the world.
    The other principal area of achievement by the Lumière brothers was colour photography. They took up Lippman's method of interference colour photography, developing special grainless emulsions, and early in 1893 demonstrated their results by lighting them with an arc lamp and projecting them on to a screen. In 1895 they patented a method of subtractive colour photography involving printing the colour separations on bichromated gelatine glue sheets, which were then dyed and assembled in register, on paper for prints or bound between glass for transparencies. Their most successful colour process was based upon the colour-mosaic principle. In 1904 they described a process in which microscopic grains of potato starch, dyed red, green and blue, were scattered on a freshly varnished glass plate. When dried the mosaic was coated with varnish and then with a panchromatic emulsion. The plate was exposed with the mosaic towards the lens, and after reversal processing a colour transparency was produced. The process was launched commercially in 1907 under the name Autochrome; it was the first fully practical single-plate colour process to reach the public, remaining on the market until the 1930s, when it was followed by a film version using the same principle.
    Auguste and Louis received the Progress Medal of the Royal Photographic Society in 1909 for their work in colour photography. Auguste was also much involved in biological science and, having founded the Clinique Auguste Lumière, spent many of his later years working in the physiological laboratory.
    [br]
    Further Reading
    Guy Borgé, 1980, Prestige de la photographie, Nos. 8, 9 and 10, Paris. Brian Coe, 1978, Colour Photography: The First Hundred Years, London ——1981, The History of Movie Photography, London.
    Jacques Deslandes, 1966, Histoire comparée du cinéma, Vol. I, Paris. Gert Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Lumière, Auguste

  • 7 Mees, Charles Edward Kenneth

    [br]
    b. 1882 Wellingborough, England
    d. 1960 USA
    [br]
    Anglo-American photographic scientist and Director of Research at the Kodak Research Laboratory.
    [br]
    The son of a Wesleyan minister, Mees was interested in chemistry from an early age and studied at St Dunstan's College in Catford, where he met Samuel E.Sheppard, with whom he went on to University College London in 1900. They worked together on a thesis for BSc degrees in 1903, developing the work begun by Hurter and Driffield on photographic sensitometry. This and other research papers were published in 1907 in the book Investigations on the Theory of the Photographic Process, which became a standard reference work. After obtaining a doctorate in 1906, Mees joined the firm of Wratten \& Wainwright (see F.C.L.Wratten), manufacturers of dry plates in Croydon; he started work on 1 April 1906, first tackling the problem of manufacturing colour-sensitive emulsions and enabling the company to market the first fully panchromatic plates from the end of that year.
    During the next few years Mees ran the commercial operation of the company as Managing Director and carried out research into new products, including filters for use with the new emulsions. In January 1912 he was visited by George Eastman, the American photographic manufacturer, who asked him to go to Rochester, New York, and set up a photographic research laboratory in the Kodak factory there. Wratten was prepared to release Mees on condition that Eastman bought the company; thus, Wratten and Wainwright became part of Kodak Ltd, and Mees left for America. He supervised the construction of a building in the heart of Kodak Park, and the building was fully equipped not only as a research laboratory, but also with facilities for coating and packing sensitized materials. It also had the most comprehensive library of photographic books in the world. Work at the laboratory started at the beginning of 1913, with a staff of twenty recruited from America and England, including Mees's collaborator of earlier years, Sheppard. Under Mees's direction there flowed from the Kodak research Laboratory a constant stream of discoveries, many of them leading to new products. Among these were the 16 mm amateur film-making system launched in 1923; the first amateur colour-movie system, Kodacolor, in 1928; and 8 mm home movies, in 1932. His support for the young experimenters Mannes and Godowsky, who were working on colour photography, led to their joining the Research Laboratory and to the introduction of the first multi-layer colour film, Kodachrome, in 1935. Eastman had agreed from the beginning that as much of the laboratory's work as possible should be published, and Mees himself wrote prolifically, publishing over 200 articles and ten books. While he made significant contributions to the understanding of the photographic process, particularly through his early research, it is his creation and organization of the Kodak Research Laboratory that is his lasting memorial. His interests were many and varied, including Egyptology, astronomy, marine biology and history. He was a Fellow of the Royal Society.
    [br]
    Principal Honours and Distinctions
    FRS.
    Bibliography
    1961, From Dry Plates to Ektachrome Film, New York (partly autobiographical).
    BC

    Biographical history of technology > Mees, Charles Edward Kenneth

  • 8 Niepce de St Victor, Claude Félix Abel

    [br]
    b. 1805 Saint-Cyr, France
    d. 1870 France
    [br]
    French soldier and photographic scientist, inventor of the first practicable glass negative process.
    [br]
    A cousin of the photographic pioneer J.N. Niepce, he attended the military school of Saumur, graduating in 1827. Niepce de St Victor had wide scientific interests, but came to photography indirectly from experiments he made on fading dyes in military uniforms. He was transferred to the Paris Municipal Guard in 1845 and was able to set up a chemical laboratory to conduct research. From photographic experiments performed in his spare time, Niepce de St Victor devised the first practicable photographic process on glass in 1847. Using albumen derived from the white of eggs as a carrier for silver iodide, he prepared finely detailed negatives which produced positive prints far sharper than those made with the paper negatives of Talbot's calotype process. Exposure times were rather long, however, and the albumen-negative process was soon displaced by the wet-collodion process introduced in 1851, although albumen positives on glass continued to be used for high-quality stereoscopic views and lantern slides. In 1851 Niepce de St Victor described a photographic colour process, and between 1853 and 1855 he developed his famous cousin's bitumen process into a practicable means of producing photographically derived printing plates. He then went on to investigate the use of uranium salts in photography. He presented twenty-six papers to the Académie des Sciences between 1847 and 1862.
    [br]
    Bibliography
    1847, Comptes Rendus 25(25 October):586 (describes his albumen-on-glass process).
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E.Epstean, New York (provides details of his contributions to photography).
    JW

    Biographical history of technology > Niepce de St Victor, Claude Félix Abel

  • 9 Blanquart-Evrard, Louis-Désiré

    [br]
    b. 2 August 1802 Lille, France
    d. 28 April 1872 Lille, France
    [br]
    French photographer, photographic innovator and entrepreneur.
    [br]
    After beginning his working life in a tobacco company, Blanquart-Evrard became Laboratory Assistant to a chemist. He also became interested in painting on ivory and porcelain, foreshadowing a life-long interest in science and art. Following his marriage to the daughter of a textile merchant, Blanquart-Evrard became a partner in the family business in Lyon. During the 1840s he became interested in Talbot's calotype process and found that by applying gallic acid alone, as a developing agent after exposure, the exposure time could be shorter and the resulting image clearer. Blanquart-Evrard recognized that his process was well suited to producing positive prints in large numbers. During 1851 and 1852, in association with an artist friend, he became involved in producing quantities of prints for book illustrations. In 1849 he had announced a glass negative process similar to that devised two years earlier by Niepcc de St Victor. The carrying agent for silver salts was albumen, and more far-reaching was his albumen-coated printing-out paper announced in 1850. Albumen printing paper was widely adopted and the vast majority of photographs made in the nineteenth century were printed in this form. In 1870 Blanquart-Evrard began an association with the pioneer colour photographer Ducos du Hauron with a view to opening a three-colour printing establishment. Unfortunately plans were delayed by the Franco-Prussian War, and Blanquart-Evrard died in 1872 before the project could be brought to fruition.
    [br]
    Bibliography
    1851, Traité de photographie sur papier, Paris (provides details of his improvements to Talbot's process).
    Further Reading
    J.M.Eder, 1945, History of Photography, trans. E. Epstein, New York.
    JW

    Biographical history of technology > Blanquart-Evrard, Louis-Désiré

  • 10 Ives, Herbert Eugene

    [br]
    b. 1882 USA
    d. 1953
    [br]
    American physicist find television pioneer.
    [br]
    Ives gained his PhD in physics from Johns Hopkins University, Baltimore, Maryland, and subsequently served in the US Signal Corps, eventually gaining experience in aerial photography. He then joined the Western Electric Engineering Department (later Bell Telephone Laboratories), c.1920 becoming leader of a group concerned with television-image transmission over telephone lines. In 1927, using a Nipkow disc, he demonstrated 50-line, 18 frames/sec pictures that could be displayed as either 2 in.×2 1/2 in. (5.1 cm×6.4 cm) images suitable for a "wirephone", or 2 ft ×2 1/2 ft (61 cm×76 cm) images for television viewing. Two years later, using a single-spiral disc and three separately modulated light sources, he was able to produce full-colour images.
    [br]
    Bibliography
    1915, "The transformation of colour mixture equations", Journal of the Franklin Institute 180:673.
    1923, "do—Pt II", Journal of the Franklin Institute 195–23.
    1925, "Telephone picture transmission", Transactions of the Society of Motion Picture and Television Engineers 23:82.
    1929, "Television in colour", Bell Laboratories Record 7:439.
    1930, with A.L.Johnsrul, "Television in colour by a beam-scanning method", Journal of the Optical Society of America 20:11.
    Further Reading
    J.H.Udelson, 1982, The Great Television Race: History of the Television Industry 1925– 41: University of Alabama Press.
    KF

    Biographical history of technology > Ives, Herbert Eugene

  • 11 Waterhouse, Major-General James

    [br]
    b. 1841
    d. 28 September 1922
    [br]
    English military man and photographer.
    [br]
    Waterhouse spent most of his career in the Indian Army. In 1861–2 he was commissioned to photograph the tribes of central India, and over the next few years visited many parts of the subcontinent. In November 1866, after working for five months in the Great Trigonometrical Survey learning the process of photozincography (an early photomechanical process used chiefly for map making), he took charge of photographic operations at the Surveyor-General's office in Calcutta, a post he held until retiring in 1897. During this time he developed many improvements in the photomechanical methods used for reproduction in his office. He also experimented with methods of colour-sensitizing photographic materials, experimenting with eosine dye and publishing in 1875 the fact that this made silver halide salts sensitive to yellow light. He also discovered that gelatine dry plates could be made sensitive to red and infra-red illumination by treatment with alizarine blue solution.
    He continued his researches upon his retirement and return to England in 1897, and made a special study of the early history of the photographic process. His work on dye sensitizing brought him the Progress Medal of the Royal Photographic Society, and the Vienna Photographic Society awarded him the Voigtländer Medal for researches in scientific photography. One invention often erroneously attributed to him is the Waterhouse stop, the use of a series of perforated plates as a means of adjusting the aperture of a photographic lens. This was described in 1858 by a John Waterhouse, being his only contribution to photography.
    BC

    Biographical history of technology > Waterhouse, Major-General James

См. также в других словарях:

  • photography, history of — Introduction       method of recording the image of an object through the action of light, or related radiation, on a light sensitive material. The word, derived from the Greek photos (“light”) and graphein (“to draw”), was first used in the… …   Universalium

  • photography, technology of — Introduction       equipment, techniques, and processes used in the production of photographs.  The most widely used photographic process is the black and white negative–positive system (Figure 1 >). In the camera the lens projects an image of… …   Universalium

  • Photography in Denmark — Peter Faber: Ulfeldts Plads (1840), Denmark s oldest photograph on record …   Wikipedia

  • Color photography — Color film redirects here. For the motion picture equivalent, see Color motion picture film. A circa 1850 Hillotype photograph of a colored engraving. Long believed to be a complete fraud, recent testing found that Levi Hill s process did… …   Wikipedia

  • History of astronomy — History of science …   Wikipedia

  • History of Medicine —     History of Medicine     † Catholic Encyclopedia ► History of Medicine     The history of medical science, considered as a part of the general history of civilization, should logically begin in Mesopotamia, where tradition and philological… …   Catholic encyclopedia

  • photography — /feuh tog reuh fee/, n. 1. the process or art of producing images of objects on sensitized surfaces by the chemical action of light or of other forms of radiant energy, as x rays, gamma rays, or cosmic rays. 2. cinematography. [1839; PHOTO +… …   Universalium

  • History of art — This article is an overview of the history of the visual arts worldwide. For the academic discipline of art history, see Art history. The Creation of Adam (1508 1512), by Michelangelo, in the Sistine Chapel (Vatican) …   Wikipedia

  • History of painting — The history of painting reaches back in time to artifacts from pre historic humans, and spans all cultures. The history of painting represents a continuous, though disrupted, tradition from Antiquity. Across cultures, and spanning continents and… …   Wikipedia

  • History of erotic depictions — The history of erotic depictions includes paintings, sculpture, photographs, dramatic arts, music and writings that show scenes of a sexual nature throughout time. They have been created by nearly every civilisation, ancient and modern. Early… …   Wikipedia

  • History of film — This article is about the history of cinema. For other uses, see History of photography. Years in film 1870s 1880s 1890s …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»